OATS AGRONOMY

Soil selection

Oats is adaptable to a wide range of soils and performance will be in proportion to soil fertility and available moisture. Avoid shallow, hard setting soils and light soils which have a low water holding capacity. Oats is relatively tolerant of acid soil, being more tolerant than wheat and barley. Growth will be adversely affected when soil pH is below 5.3.

Soil salinity

Salinity, primarily caused by excess sodium chloride (NaCl or salt) in the soil, is a concern in many agricultural areas. Excessive soil salts can reduce the performance of oats.

By comparison oats is substantially less tolerant to salt than barley. However, oats is slightly more tolerant than sorghum. The reference text 'Oat Science and Technology' edited by Marshall and Sorrells (1992) quotes data indicating a 10% yield reduction when soil salinity reaches 5 dS/m. A 50% reduction in yield is likely when soil salinity reaches 8-10 dS/m.

Sowing depth

Seed should be placed deep enough to give it adequate moisture, but in general should be less than 7.5cm (3 inches) particularly with small seeded varieties.

Row spacing

Winter cereals are traditionally sown on a narrow row spacing of 15cm (6 inches) or 23cm (9 inches) to promote ground cover and suppress weed growth. Some farmers and researchers are now questioning this tradition of relatively narrow rows.

In some trials, a row spacing of 76cm (30 inches) has assisted in minimising leaf rust on susceptible varieties. In areas where weeds are not a problem, or can be controlled, a wider row spacing may be worth trying.

The advantages of wider rows are:

1. Reduced trampling losses during grazing
2. A more open crop canopy that will be less favourable to rust development
3. Potential to reduce sowing rate

Sowing time

Due to the wide range of oat varieties available, it is possible to choose one suitable for sowing in the beginning of autumn. Not all varieties can be sown this early. It may be suitable to sow oats as late as early winter, although this may vary in Southern Australia. Refer to local departmental guidelines for variety choices and sowing times. Avoid early sowings of leaf rust susceptible varieties and varieties sensitive to sowing into very warm soil.

Is soil temperature important?

Soil temperature at sowing time is important. If the soil is too warm, germination will be delayed and there may be a very poor plant establishment. Sensitivity to soil temperature does vary between varieties but in general, the ideal soil temperature for germination and establishment of oats is 15-23°C. Some varieties can be successfully sown into soil above 25°C, but it is important to find out and not just assume it will be all right.

Soil temperature will vary during the day and for oats it is better to measure the maximum daily soil temperature. To establish the daily maximum, check soil temperature at mid-afternoon. Use a spike type thermometer, placing the ‘sensing’ area of the thermometer at the anticipated sowing depth. Proceed with sowing when the soil temperature, over a number of days, is within the acceptable level for the particular variety.
It is important to note that even with the combination of cool nights and daily maximum air temperatures of 30°, germination for some varieties can be depressed due to high soil temperature (Marshall and Sorrells 1992). Table 1 illustrates this further with some Australian autumn data clearly showing the large difference between morning and mid-afternoon soil temperatures. The soil temperatures listed were taken at a depth of 10cm. At a more common sowing depth of 5cm, the 3pm temperature would be expected to be even higher. Note also that the soil temperature, even at 10cm, can exceed the daily maximum air temperature.

Table 1 Comparison of some air and soil temperature data measured over successive days

<table>
<thead>
<tr>
<th>Day</th>
<th>Air temp °C</th>
<th>Soil temp at 10cm °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max</td>
<td>min</td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>15</td>
</tr>
</tbody>
</table>

Sowing rates

Table 2 provides a general guide to sowing rates for the most common winter cereal forages.

Table 2 A general guide to sowing rates for cereal forages. Consult a local advisor for more precise recommendations.

<table>
<thead>
<tr>
<th>Situation</th>
<th>Sowing rate (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oats</td>
</tr>
<tr>
<td>Dryland Qld</td>
<td>25-40</td>
</tr>
<tr>
<td>Dryland NSW</td>
<td>50-80</td>
</tr>
<tr>
<td>Dryland Vic, SA, Tas</td>
<td>55-100</td>
</tr>
<tr>
<td>Irrigation Qld</td>
<td>40-60</td>
</tr>
<tr>
<td>Irrigation NSW, Vic, SA, Tas</td>
<td>60-100</td>
</tr>
</tbody>
</table>
Fertiliser requirements

A starter fertiliser (containing nitrogen and phosphorus) may assist oat establishment and early growth. The phosphorus can help plants develop better root systems. This may mean plants are well anchored at an earlier age and the first grazing can occur when plants are at the desired height.

Nitrogen is important for crop growth and forage protein content. If soil nitrogen levels are not known, soil tests should be carried out or fertiliser applied to strips of the paddock and subsequent crop growth observed.

To assist with calculations, a crop of oats with 22% protein will remove 35kg of nitrogen (N) per tonne of dry matter.

Helpful hint: 1 unit of nitrogen (N) = 1 kg of N / ha

Urea is 46% N

1 x 40 kg bag of Urea \(\rightarrow\) 0.46 x 40 kg of N
\(\rightarrow\) 18.4 kg of N / ha

Example

50 units of nitrogen (N) as Urea, was to be applied to a crop after the first grazing.

N content of Urea is 46% or 0.46

Area of crop was 27ha.

Total units of N required = 27 x 50 units \(\rightarrow\) 1350 which equals 1350 kg of N

To convert the kg’s of N to kg’s of Urea, the calculation is

Total Urea required for 27 ha is 1350 / 0.46 \(\rightarrow\) 2935 kg

This becomes a significant cost. To ensure the most benefit, drill fertiliser into the soil, apply just before imminent rainfall, or irrigate after application.

Weed control

Broadleaf weeds such as wild turnip (Brassica tournefortii), pigweed (Portulaca oleracea) and various thistles, can be controlled with selective herbicides. Slashing after grazing is an alternative means of preventing unpalatable weeds from seeding. In recent years, some oat varieties have shown adverse side effects to particular herbicides, registered for use on oats. This means that even though a herbicide is registered for general use on oats, the chemical may damage some varieties.

Current recommendations are available from government advisors or chemical suppliers. New South Wales Agriculture conducts herbicide screening trials, using a range of winter crops. The results are updated each year in the NSW Agriculture publication, 'Cultivar x Herbicide Screening'.

The Pacific Seeds variety Taipan is adversely affected by the herbicide Tigrex®. Taipan is damaged by 2,4-D amine if excess chemical is applied, such as overlapping of spray application.
VARIETY SELECTION

All current Pacific Seeds oat varieties are covered by Plant Breeder’s Rights (PBR). Plant Breeder’s Rights are a form of intellectual property where a particular variety is registered and protected under the Plant Breeder’s Rights Act 1994.

If you purchase a variety protected by PBR, there is no restriction on using the seed on your own farm and retaining a portion of seed produced for your own on farm purposes such as re-sowing. However, a variety protected by PBR must not be produced and re-sold unless you are licensed to do so. There can be harsh penalties for those found in breach of PBR legislation.

The safest way to ensure you are purchasing good quality Pacific Seeds oat seed is by doing so through retailers who source the product from licensed Pacific Seeds oat associates. By doing so you can be assured of varietal purity, physical purity and seed germination.

Pacific Seeds oats varieties are available through our associate network.

Pacific Seeds Oats Associates

Queensland

<table>
<thead>
<tr>
<th>Associated Grain</th>
<th>PB Agrifood</th>
<th>Woods Seeds Pty Ltd</th>
<th>Galleon Grains Pty Ltd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalby, QLD</td>
<td>Toowoomba, QLD</td>
<td>Goondiwindi, QLD</td>
<td>Springsure, QLD</td>
</tr>
<tr>
<td>Ph: 07 4669 9500</td>
<td>Ph: 07 4633 5555</td>
<td>Ph: 07 4670 0400</td>
<td>Ph: 07 4984 6141</td>
</tr>
</tbody>
</table>

New South Wales

<table>
<thead>
<tr>
<th>Agrigrain</th>
<th>Auswest Seeds</th>
<th>Auswest Seeds</th>
<th>Hart Bros. Seeds</th>
<th>Superior Seed Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narromine, NSW</td>
<td>Moree, NSW</td>
<td>Forbes, NSW</td>
<td>Junee, NSW</td>
<td>Deniliquin, NSW</td>
</tr>
<tr>
<td>Ph: 02 6889 2200</td>
<td>Ph: 02 67511209</td>
<td>Ph: 02 6852 1500</td>
<td>Ph: 02 6924 7206</td>
<td>Ph: 03 5881 6689</td>
</tr>
</tbody>
</table>
Soil temperature requirement
A major factor affecting the successful germination and establishment of oats is soil temperature. With early autumn sowing, warm soil may prevent seed from germinating. Laboratory tests and field experience have shown effective germination and establishment with maximum soil temperatures up to 28°C.

Dryland planting rates
CQ & Western Qld 25-40 kg/ha
Southern Qld 25-50 kg/ha
N & C NSW 25-50 kg/ha
S NSW & Vic dryland 55-100 kg/ha
 irrigated 50-100 kg/ha
Tasmania 100 kg/ha

Quick start quality feed
Key features
- Semi erect variety with leaf rust resistance
- Establishes in warmer soils (up to 28°C) more readily than most varieties
- Ideal for early plantings for high quality autumn feed
- High dry matter production under dryland and irrigated conditions
- It will maintain vegetative growth well into late spring
- Ideal companion to Drover to complete your oats program
- Suitable for grazing and hay production

Plant type
Comet is a semi erect forage oats variety providing quick early feed. Under favourable growing conditions Comet will produce for multiple grazings.

Grazing management
Comet is ideally suited to cattle, particularly in a continuous grazing situation. For best results in a rotational grazing system it should not be grazed below the growing point located just above the highest node. Heavy grazing will result in poor regrowth. However, frequent grazing will help crop performance and minimise leaf rust development.
ATTRIBUTES

In replicated cutting trials Drover has shown slightly lower dry matter yields than Taipan in the initial growth but higher yield through the winter months. Drover is slightly earlier to flower than Taipan.

Key features
- Good warm soil emergence (up to 28°C)
- Produces large quantities of winter feed
- Will remain vegetative into late spring
- High dry matter production
- Good choice for grazing and hay
- Intermediate growth habit

Background
Drover was selected for its high level of dry matter production and regrowth ability.

Plant type
Drover is a grazing oat with very good post grazing recovery. It has an intermediate growth habit similar to that of Warrego. Drover also has relatively low growing points which makes it suitable for high stocking rates for all classes of livestock.

Leaf rust resistance
Drover is now susceptible to the current races of leaf rust. However, good grazing or cutting management will reduce the impacts of leaf rust.

Wider row spacings of at least 45cm will also minimise the effects of rust.
ATTRIBUTES

Key features
- Erect plant with exceptionally quick early growth and high dry matter yields
- Establishes in warmer soils (up to 29°C) more readily than most varieties
- Good drought tolerance
- Produces large quantities of autumn and early winter feed
- Ideal for grazing
- It will maintain vegetative growth well into late spring

Background
Taipan was released under PBR in 2002. It was selected because of its exceptionally quick germination and establishment and its ability to hang on in tough growing conditions.

Plant type
Taipan is an erect oat providing quick, early growth. Under favourable growing conditions it can be grazed early in the season.

Rust resistance
Taipan is now susceptible to the current races of leaf rust. However, good grazing or cutting management will reduce the impacts of leaf rust.

Wider row spacings of at least 45cm will also minimise the effects of rust.

Grazing management
Taipan is ideally suited to cattle, particularly in a continuous grazing situation. For best results in a rotational grazing system it should not be grazed below the growing point located just above the highest node. Heavy grazing will result in poor regrowth. However, frequent grazing will help crop performance and minimise leaf rust development.

Good drought tolerance
Taipan has demonstrated an ability to continue growing even in adverse conditions. It can handle hot dry conditions better than many other varieties, maintaining green palatable feed well into late spring.

Planting rates
- CQ & Western Qld 25-40 kg/ha
- Southern Qld 25-50 kg/ha
- N & C NSW 25-50 kg/ha
- S NSW & Vic dryland 55-100 kg/ha
- S NSW & Vic irrigated 50-100 kg/ha
- Tasmania 100 kg/ha

Maturity Late
Plant Type Erect
Leaf rust reaction Susceptible
Time to first grazing Quick
Don’t graze below 10 - 15cm
Early winter feed *****
Winter Feed ***
Spring Feed ****
Grazing - Cattle Very Good
- Sheep Good
- Horses Very Good

The information provided in this publication is intended as a guide only. Advanta Seeds Pty Ltd (including its officers, employees, contractors and agents) (“Advanta Seeds”) can not guarantee that every statement is without flaw of any kind. While Advanta Seeds has taken all due care to ensure that the information provided is accurate at the time of publication, various factors, including planting times and environmental conditions may alter the characteristics and performance from plants.

Advanta Seeds shall not be liable for any errors or omissions in the information or for any loss, injury, damage or other consequence whatsoever that you or any person might incur as a result of your use of or reliance upon the products (whether Advanta Seeds products or otherwise) and information which appear in this publication. To the maximum extent permitted by law, the liability of Advanta Seeds for any claim whatsoever arising out of the supply or use of or reliance upon the products and information in this publication (including liability for breach of any condition or warranty implied by the Trade Practices Act 1974 or any other law) is limited at its discretion, to the replacement of the products, the supply of equivalent products or the resupply of the publication. For application to specific conditions, seek further advice from a local professional. © Advanta Seeds 2018.