2022-23 Pacific Seeds Hyola agronomy - canola technology by populations research results

Optimising the value proposition when comparing canola varieties and different herbicide technologies against multiple population targets

Andrew Heinrich, Willow Liddle Pacific Seeds Australia

Key messages:

- Hybrid cultivars consistently outperformed OP (open pollinated) varieties in plant establishment, grain yield, and economic returns across herbicide technologies. Environmental conditions emerged as the primary influencing factor across multiple environments.
- CT[®] and TT hybrids with elevated genetic yield potential matched yields and returns of TruFlex[®], TruFlex + Clearfield[®], or Clearfield hybrids in specific environments.
- Significant yield improvements were evident when moving from 15 to 40 plants/m².
- Gross returns varied with population targets, seed prices, and GM (genetically modified) vs. non-GM grain commodity price differentials. Higher populations often led to improved returns, as depicted in figures and tables.

Aims

This study investigates differences between different canola herbicide technologies concerning plant establishment (plants/ m^2), harvested grain yield (tonnes/ha), and oil %. 14 distinct hybrid cultivars are compared against 2 open-pollinated (OP) TT varieties (purchased seed source), with the aim of identifying optimal gross returns (\$/ha) for growers.

Introduction

Australian canola growers and advisors seek comprehensive scientific insights on variety performance, at different population targets, while taking into account diverse herbicide technologies and hybrid vs OP varieties. This imperative arises due to the industry's rapid expansion of herbicide-tolerant hybrids, including GM and non-GM stacked options, necessitating optimal agronomic and financial strategies.

This study examines 14 hybrids alongside 2 OP TT varieties, focusing on plant establishment, grain yield, and oil % production. The aim is to determine best gross return (\$/ha) propositions. The research encompasses 3 population targets and evaluates different genetic backgrounds, herbicide-tolerant technologies, and their interactions on yield, oil %, and gross returns.

Previous published literature has identified varying results. In 24 experiments conducted across a range of agricultural environments in Western Australia between 2010 and 2014, French et al. (2016) reported grain yield response to crop density was adequately described by an asymptotic model (where yield approaches but never quite reaches a ceiling at very high density). Zhang et al. (2016) demonstrated that relative yield and profit of an Australian hybrid compared with open-pollinated canola is largely determined by growing-season rainfall which forms a key component of environment (E).

This research, conducted across 3 Western Australian locations, compares 6 herbicide technologies (single trait or stacked) against 3 population targets. It seeks to explore genetics (G) by environment (E) by management (M) interactions.

Method

3 field research extension sites were established in Western Australia: Lake Hinds WA (CND), Tammin WA (TMN), and Corrigin WA (COR), each with a layout organised as randomised complete blocks with two replicates (RCB x 2 replicates, refer to figure 1 for trial layout and treatment list). These selected trial environments showcased diverse conditions encompassing seasonal rainfall, cropping histories, soil types, and soil pH. The trials encompassed a combination of both best management practice (BMP) and district standard practice (DSP) treatments for each location, providing a rich array of data points for meticulous comparative analysis (refer to table 1-3 and graphs 1-3).

A total of 16 canola varieties were subjected to comparison within this study. This set included 2 open-pollinated TT, 3 hybrid TT, 2 hybrid CT®, 1 hybrid LT, 4 hybrid CL, 1 hybrid XC®, and 3 hybrid TruFlex lines, categorised within their respective technology groups. These comparisons spanned 3 distinct target population treatments, specifically 15 plants per m², 25 plants per m², and 40 plants per m². These targets were calculated based on 90% germination and an estimated 75% establishment survival, necessitating adjustments in all seed packet weights. The corresponding effective sowing rates were 1.1 kg/ha, 1.8 kg/ha, and 2.85 kg/ha. The herbicide tolerance technologies under consideration encompassed CT (Clearfield + triazine tolerant), triazine tolerant, Liberty + triazine tolerant, Clearfield, TruFlex + Clearfield, and TruFlex.

Trial Design

5m	PLOTS	Buffer		+ XC	Buffer		L	Buffer		-	T & L1	-	Buffer
JIII	FLOTS	buller	~~ -	глс	bullet	C	· L	buller			IGLI		buller
	12	Buffer XCT			Buffer XCT			Buffer XCT					Buffer XCT
	11	Buffer XCT			Buffer XCT			Buffer XCT					Buffer XCT
REP 2	10	Buffer XCT			Buffer XCT			Buffer XCT					Buffer XCT
RLF Z	9	Buffer XCT			Buffer XCT			Buffer XCT					Buffer XCT
	8	Buffer XCT			Buffer XCT			Buffer XCT					Buffer XCT
	7	Buffer XCT			Buffer XCT			Buffer XCT					Buffer XCT
	6	Buffer XCT			Buffer XCT			Buffer XCT					Buffer XCT
	5	Buffer XCT			Buffer XCT			Buffer XCT					Buffer XCT
REP 1	4	Buffer XCT			Buffer XCT			Buffer XCT					Buffer XCT
	3	Buffer XCT			Buffer XCT			Buffer XCT					Buffer XCT
	2	Buffer XCT			Buffer XCT			Buffer XCT					Buffer XCT
	1	Buffer XCT			Buffer XCT			Buffer XCT					Buffer XCT
	RANGE	Buffer	XX -	+ XC	Buffer	C	Ľ	Buffer		СТ & Т	T & L1	-	Buffer
	ROWS	1	2	3	4	5	6	7	8	9	10	11	12

2022 HYOLA TD - SYSTEMS POPULATION TRIALS (22STAGVL6)

Hyola systems population trials - overall design entries by treatment

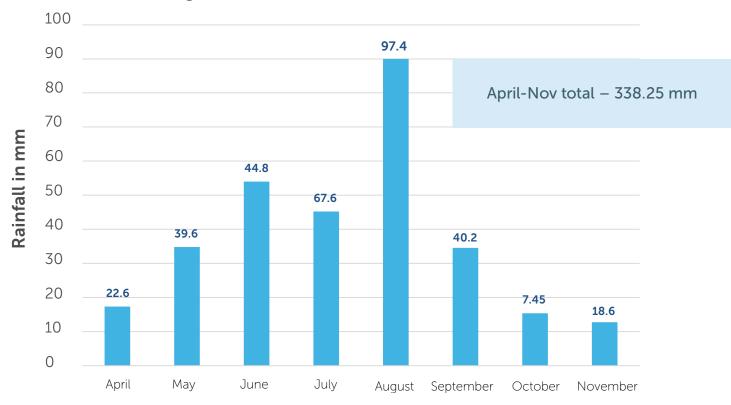
Treatment	Treatment XX + XC		CL	Treatment	CT + TT + LT
number	12	number	12	number	24
1	Emu TF-15pm ²	13	44Y94-15pm ²	25	Hyola Blazer TT-15pm ²
2	Emu TF-25pm ²	14	44Y94-25pm ²	26	Hyola Blazer TT-25pm ²
3	Emu TF-40pm ²	15	44Y94-40pm ²	27	Hyola Blazer TT-40pm ²
4	InVigor R 4520P-15pm ²	16	Hyola Solstice CL-15pm ²	28	HyTTec Trident TT-15pm ²
5	InVigor R 4520P-25pm ²	17	Hyola Solstice CL-25pm ²	29	HyTTec Trident TT-25pm ²
6	InVigor R 4520P-40pm ²	18	Hyola Solstice CL-40pm ²	30	HyTTec Trident TT-40pm ²
7	XC210034-15pm ²	19	Hyola Continuum CL-15pm ²	31	HyTTec Trifecta TT-15pm ²
8	XC210034-25pm ²	20	Hyola Continuum CL-25pm ²	32	HyTTec Trifecta TT-25pm ²
9	XC210034-40pm ²	21	Hyola Continuum CL-40pm ²	33	HyTTec Trifecta TT-40pm ²
10	Condor TF-15pm ²	22	45Y95-15pm ²	34	Hyola Defender CT-15pm ²
11	Condor TF-25pm ²	23	45Y95-25pm ²	35	Hyola Defender CT-25pm ²
12	Condor TF-40pm ²	24	45Y95-40pm ²	36	Hyola Defender CT-40pm ²
				37	DG Bidgee-15pm ²
				38	DG Bidgee-25pm ²
				39	DG Bidgee-40pm ²
				40	Hyola Enforcer CT-15pm ²
				41	Hyola Enforcer CT-25pm ²
				42	Hyola Enforcer CT-40pm ²
				43	InVigor LT 4530P-15pm ²
				44	InVigor LT 4530P-25pm ²
				45	InVigor LT 4530P-40pm ²
				46	ATR Bonito-15pm ²
				47	ATR Bonito-25pm ²
				48	ATR Bonito-40pm ²

Figure 1. Replicated trial layouts showing technology blocks and treatment listings for each environment.

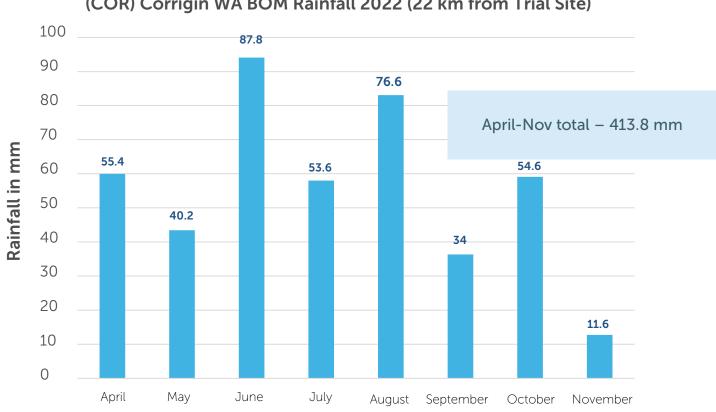
Trial Details	Lake Hinds WA (CND)						
Co-operator		Gary Whyte					
Location	Calingiri – Wongan Hills Rd, Lake Hind						
GPS location		-30.982138	3,116.584746				
Date sown		27 Ap	ril 2022				
Crop type		Ca	nola				
Paddock history		2021 oats for hay, 20	20 wheat, 2019 wheat				
Seeding rate (kg/ha)		As per package	ed seed provided				
Target density (plants/m ²)		15 plants/m², 25 pla	ants/m², 40 plants/m²				
Sowing depth (mm)		30	mm				
Soil moisture depth (mm)		25	mm				
Stubble loading		L	OW				
Soil type		Sandy	y gravel				
Sowing equipment	Precision tr	ial cone seeder fitted with	n knife points and trailing	press wheels			
Sowing speed (km/h)		2 k	m/hr				
Soil tests conducted		27 Ap	ril 2022				
	Analyte	Unit	Result				
	Sample depth	cm	0-10				
	Colour		YWGR				
	Gravel	%	5-10				
	Texture		1				
	Ammonium nitrogen	mg/kg	4				
	Nitrate nitrogen	mg/kg	16				
Soil test results	Phosphorus Colwell	mg/kg	33				
	Potassium Colwell	mg/kg	94				
	Sulfur	mg/kg	6				
	Organic carbon	%	1.16				
	Conductivity	dS/m	0.094				
	pH Level (CaCl ₂)	03/11	6.7				
	pH Level (H_2 0)		7.4				
Fertiliser applied	Date	Product	Rate				
rei dusei applied	27 April 2022	Multi K starter	90 kg/ha				
	11 July 2022	Urea	60 kg /ha				
	15 June 2022	Urea	80 kg/ha				
Incontinido emplicatione		Bifenthrin 250	100 ml/ha				
Insecticide applications	Pre-emergent						
	10 November 2022	Chlorpyrifos	2 l/ha				
Herbicide applications	Date	Product	Rate	Applied to herbicide technology block			
Application A	27 April 2022	Round Up	2 l/ha	XX + XC, CL, CT + TT			
		Bifenthrin	500 ml/ha	XX + XC, CL, CT + TT			
Application B	15 June 2022	Roundup	1.67 l/ha	XX + XC			
		Imazamox	0.75 l/ha	CL			
		Atrazine	2.2 kg/ha	CT + TT			
Application C	2 July 2022	Clethodim	500 ml/ha	CT + TT			
		Clopyralid	150 ml/ha	CT + TT			
Application D							
Application E	26 October 2022	Diquat	3 l/ha	XX + XC, CL, CT + TT			
Harvest		10 Nover	mber 2022				

 Table 1: 2022 Lake Hinds WA trial details and agronomic management.

Trial details	Corrigin WA (COR)					
Co-operator	Geoff Fisher					
Location	Old Kulin Road, Corrigin					
GPS location		-32.499523	5, 117.990491			
Date sown		22 Ap	ril 2022			
Crop type		Ca	nola			
Paddock history		2021 barley, 2020 oa	ts for hay, 2019 wheat			
Seeding rate (kg/ha)		As per package	ed seed provided			
Target density (plants/m ²)		15 plants/m², 25 pla	nts/m², 40 plants/m²			
Sowing depth (mm)		35	mm			
Soil moisture depth (mm)		25	mm			
Stubble loading		L	OW			
Soil type		Grave	lly sand			
Sowing equipment	Precision tr	ial cone seeder fitted with	n knife points and trailing	press wheels		
Sowing speed (km/h)		2 k	m/hr			
Soil tests conducted		22 Ap	ril 2022			
	Analyte	Unit	Result			
	Sample Depth	cm	0-10			
	Colour		GR			
	Gravel	%	15-20			
	Texture		2			
	Ammonium nitrogen	mg/kg	2			
	Nitrate nitrogen	mg/kg	21			
Soil test results	Phosphorus Colwell	mg/kg	36			
	Potassium Colwell	mg/kg	41			
	Sulfur	mg/kg	5.8			
	Organic carbon	%	1.28			
	Conductivity	dS/m	0.069			
	pH Level (CaCl ₂)	00/11	5.8			
	pH Level (H ₂ 0)		6.4			
Fertiliser applied	Date	Product	Rate			
	22 April 2022	Multi K starter	100 kg/ha			
	15 June 2022	Urea	60 kg/ha			
	14 July 2022	Urea	60 kg/ha			
Insecticide applications	Pre-emergent	Bifenthrin 250	100 ml/ha			
insecticide applications	29 November 2022	Chlorpyrifos	2 l/ha			
	29 NOVEITIBEI 2022	Chiorpynios	2 (/TId	Applied to herbicide		
Herbicide applications	Date	Product	Rate	technology block		
Application A	22 April 2022	Round Up	2 l/ha	XX + XC, CL, CT + TT		
Application B	1 June 2022	Roundup	1.67 l/ha	XX + XC		
		Imazamox	0.75 l/ha	CL		
		Atrazine	2.2 kg/ha	CT + TT		
Application C	15 June 2022	Clethodim	500 ml/ha	CT + TT		
		Clopyralid	150 ml/ha	CT + TT		
Application D	25 July 2022	Roundup	1.67 l/ha	XX + XC		
Application E	13 October 2022	Diquat	3 l/ha	XX + XC, CL, CT + TT		
Harvest			nber 2022			

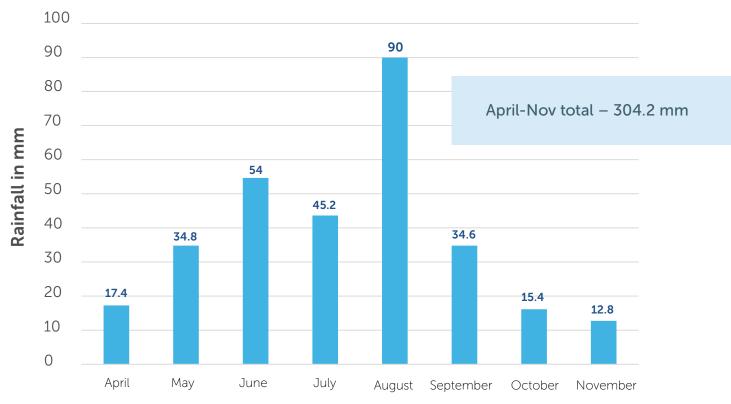

 Table 2: 2022 Corrigin WA trial details and agronomic management.

Trial details	Tammin WA (TMN)						
Co-operator	Rod Stokes						
Location	Bolton Rd, Tammin						
GPS location		-31.607713, 117.442548					
Date sown		26 Ap	ril 2022				
Crop type		Ca	nola				
Paddock history		2021 wheat, 2020	wheat, 2019 clover				
Seeding rate (kg/ha)		As per package	ed seed provided				
Target density (plants/m ²)		15 plants/m², 25 pla	ants/m², 40 plants/m²				
Sowing depth (mm)		30	mm				
Soil moisture depth (mm)		25	mm				
Stubble loading		L	OW				
Soil type		Sa	and				
Sowing equipment	Precision tr	rial cone seeder fitted with	n knife points and trailing	press wheels			
Sowing speed (km/h)		2 k	m/hr				
Soil tests conducted		26 Ap	ril 2022				
	Analyte	Unit	Result				
	Sample Depth	cm	0-10				
	Colour		GR				
	Gravel	%	0				
	Texture		1.5				
	Ammonium nitrogen	mg/kg	1				
	Nitrate nitrogen	mg/kg	42				
Soil test results	Phosphorus Colwell	mg/kg	28				
	Potassium Colwell	mg/kg	135				
	Sulfur	mg/kg	24.1				
	Organic carbon	%	0.73				
	Conductivity	dS/m	0.166				
	pH Level (CaCl ₂)		5.5				
	pH Level (H ₂ 0)		6				
Fertiliser applied	Date	Product	Rate				
	26 April 2022	Multi K starter	90 kg/ha				
	13 June 2022	Urea	70 kg/ha				
	10 August 2022	Urea	60 kg/ha				
Insecticide applications	Pre-emergent	Bifenthrin 250	100 ml/ha				
	4 November 2022	Chlorpyrifos	2 l/ha				
Herbicide Applications	Date	Product	Rate	Applied to herbicide technology block			
Application A	26 April 2022	Round Up	2 l/ha	XX + XC, CL, CT + TT			
		Bifenthrin	500 ml/ha	XX + XC, CL, CT + TT			
Application B	27 May 2022	Roundup	1.67 l/ha	XX + XC			
		Imazamox	0.75 l/ha	CL			
		Atrazine	2.2 kg/ha	CT + TT			
Application C	13 June 2022	Clethodim	500 ml/ha	CT + TT			
		Clopyralid	150 ml/ha	CT + TT			
Application D	6 July 2022	Roundup	1.67 l/ha	XX + XC			
Application E	24 October 2022	Diquat	3 l/ha	XX + XC, CL, CT + TT			
Harvest			nber 2022				


Table 3: 2022 Tammin WA Trial Details and Agronomic Management.

(CND) Wongan Hills BOM Rainfall 2022 (19 km from Trial Site)

Graph 1: 2022 Wongan Hills (Lake Hinds) WA rainfall data



(COR) Corrigin WA BOM Rainfall 2022 (22 km from Trial Site)

Graph 2: 2022 Corrigin WA rainfall data.

pacificseeds.com.au

(TMN) Tammin BOM Rainfall 2022 (3 km from Trial Site)

Graph 3: 2022 Tammin WA rainfall data.

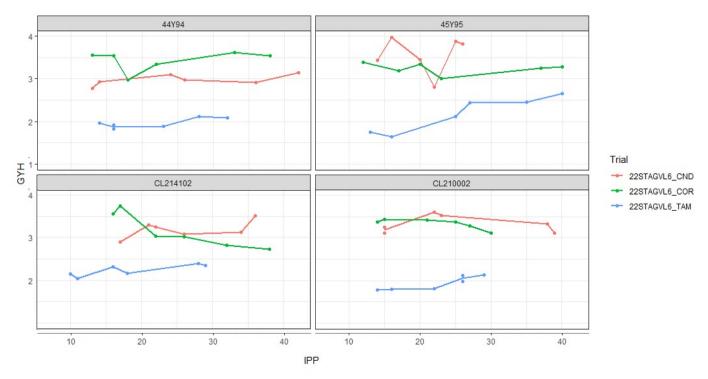
The assessment encompassed comprehensive measurements across all replicates and environments. Plants per m² were quantified through 4x1m row counts per plot, performed at 14 days after sowing (DAS) and 28 DAS. These measurements were further validated by stem counts post-harvest, accompanied by visual subjective vigour ratings at the 4-6 leaf stage, in addition to visual maturity ratings at both flowering and maturity stages.

Quantification of grain yield (t/ha) occurred using plot harvesters, while oil % was gauged employing near-infrared spectroscopy (NIR). Gross return calculations used foundational assumptions from Table 4.

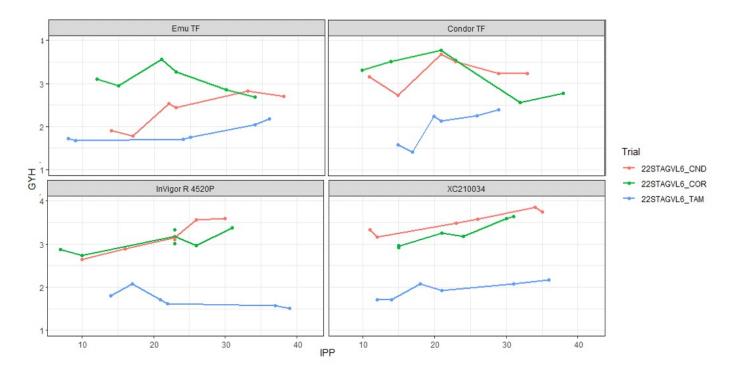
Population, yield, and oil % analyses for individual sites were meticulously executed. This involved fitting entry, IPP (Popm2), and TargetPop as fixed linear factors, complemented by spatial adjustments implemented through the auto-regressive model. This framework yielded best linear unbiased estimators (BLUE) outputs for each site. The statistical framework employed ASReml (Gilmour et al. (2010)).

A deeper exploration of yield entailed the application of single step factor analytic MET (multiple environment trial) analysis. Here, the model integrated plants/m2 as a linear fixed factor alongside composite entry as a random factor, culminating in best linear unbiased predictors (BLUP) for each site. Spatial adjustments were determined via the auto-regressive model. The MET analysis discerned significant GxExM effects. As a statistical reference, ASReml was employed, aligning with the framework established by Gilmour et al. (2010).

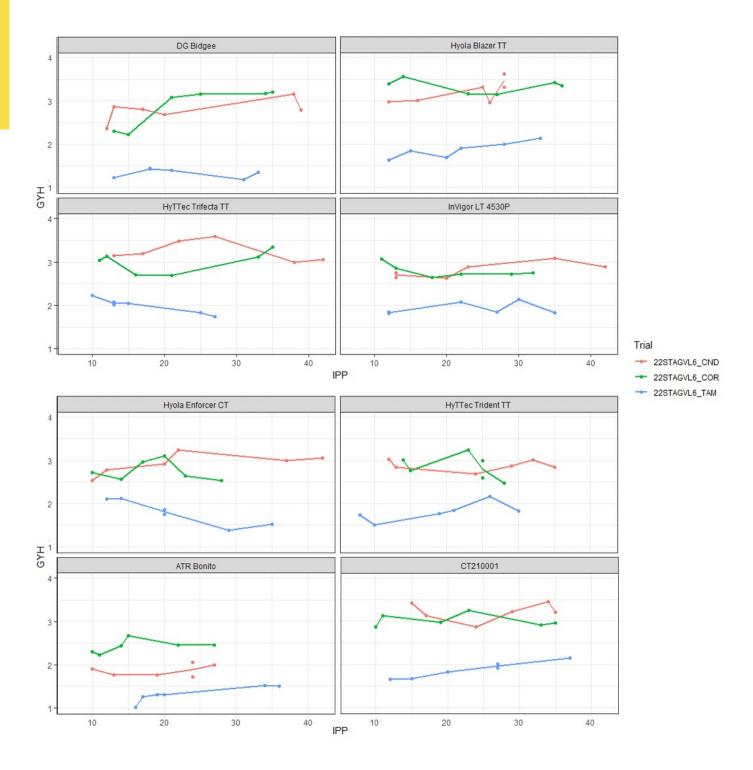
Variety details	Hybrid or OP	Herbicide technology	Seed cost (\$/kg)	End point royalty (\$/MT)	Base price (\$/MT)
Nuseed Emu TF	Hybrid	TruFlex	\$40	NA	\$800
InVigor R 4520P	Hybrid	TruFlex	\$50	NA	\$800
XC210034 (EXP)	Hybrid	TruFlex + Clearfield	\$40	NA	\$800
Nuseed Condor TF	Hybrid	TruFlex	\$40	NA	\$800
Pioneer 44Y94	Hybrid	Clearfield	\$32	NA	\$850
Hyola Solstice CL	Hybrid	Clearfield	\$32	NA	\$850
Hyola Continuum CL	Hybrid	Clearfield	\$32	NA	\$850
Pioneer 45Y95	Hybrid	Clearfield	\$32	NA	\$850
Hyola Blazer TT	Hybrid	Triazine	\$32	NA	\$850
HyTTec Trident TT	Hybrid	Triazine	\$28	\$5	\$850
HyTTec Trifecta TT	Hybrid	Triazine	\$28	\$5	\$850
Hyola Defender CT	Hybrid	Clearfield + Triazine	\$32	NA	\$850
Hyola Enforcer CT	Hybrid	Clearfield + Triazine	\$32	NA	\$850
InVigor LT 4530P	Hybrid	Liberty + Triazine	\$35	NA	\$850
DG Bidgee TT	OP	Triazine	\$18	\$5	\$850
ATR Bonito	OP	Triazine	\$18	\$5	\$850


Table 4: 2022 variety details and gross return foundation assumptions.

Results and discussion

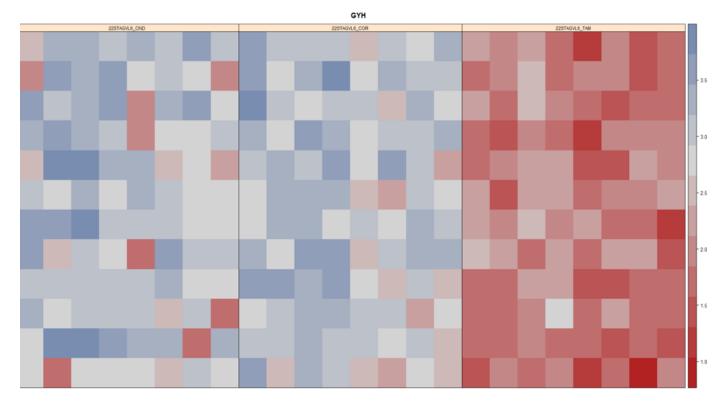

French et al. (2016) noted canola field establishment ranging from 0.3 to 1, with greater rates at lower target densities and a median of 0.585 at 40 plants/m². In this study, variety mean field establishment spanned 0.35 to 1.26 (15 plants/m²), 0.31 to 1.24 (25 plants/m²), and 0.23 to 1.2 (40 plants/m²).

Graphs 4 and 5 depict relationships for Clearfield, TruFlex + Clearfield, and TruFlex hybrids between actual plant populations and harvested grain yields. Some hybrids positively responded to increased plant numbers, while others plateaued or showed no response. Experimental hybrid XC210034 consistently displayed rising yield responses with increased plant populations across all locations.

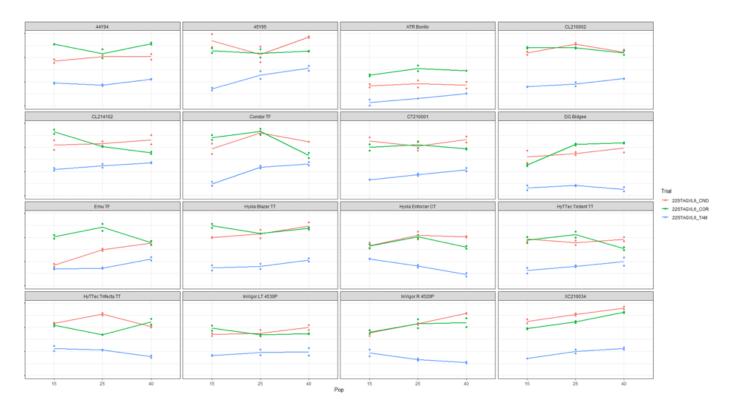


Graph 4: 2022 grain yield relationships by actual plant populations achieved compared for Clearfield hybrids. CL214102 is now commercially release as Hyola Solstice CL. CL210002 is now commercially released as Hyola Continuum CL.

Graph 5: 2022 grain yield relationships by actual plant populations achieved compared for TruFlex and TruFlex + Clearfield stacked hybrids.


Graph 6: 2022 grain yield relationships by actual plant populations achieved compared for triazine and triazine + Clearfield stacked hybrids, Liberty + triazine stacked hybrid vs open pollinated TT varieties. CT210001 is now commercially released as Hyola Defender CT.

Graph 6 illustrates relationships for Clearfield + triazine, triazine, and Liberty + triazine hybrids, as well as OP triazine varieties, showcasing actual plant populations and harvested grain yields.


Experimental line CT210001 (Hyola Defender CT) and OP variety DG Bidgee TT responded positively to increased plant numbers, yielding more in specific locations. ATR Bonito and InVigor LT4530P displayed more of a flat-lined response in certain locations.

Hyola Enforcer CT showed negative yield responses in some locations with increasing plant numbers. Hybrids generally outperformed OP variety ATR Bonito TT in yield at most sites. Newer OP variety DG Bidgee TT demonstrated better overall performance relative to hybrids in higher yielding environments.

Figure 2: Heat maps of analysed grain yields of all varieties and technologies at each of the 3 trial locations. LHS represents CND Trial, then the COR Trial in the center with the TMN Trial on the RHS.

Graph 7: 2022 grain yield relationships by plant population targets compared for all herbicide technologies across all 3 environments. CL214102 is commercially released as Hyola Solstice CL, CL210002 is commercially released as Hyola Continuum CL and CT210001 is commercially released as Hyola Defender CT.

Photo 1: 2022 Corrigin WA Hyola technology by population Trial XX, XC herbicide Section.

Graph 7 illustrates the correlation between grain yield and plant population targets. Varieties exhibited diverse responses: some positive, some neutral, and others negative due to environmental influences.

French et al. (2016) found slight differences in optimal densities for hybrid and open-pollinated cultivars. High rainfall zones had approximately 10 plants/m² higher optimal densities than low and medium rainfall zones.

Catalier (2019) reported mixed findings: yield increased with seeding rates in some studies (Harker et al., 2012a, 75 and 150 seeds/m²), but not in others (Kutcher et al., 2013).

Gan et al. (2016) noted yield responses to seeding rates were influenced by environment and the specific rates or densities compared; lower seeding rates were more likely to show yield responses than higher rates.

This research identified E as the primary factor influencing grain yield responses across all 3 locations, followed by genetics (Table 5). G x E and G x IPP (Population) x E interactions contributed less to variance.

At individual sites, G often explained a significant percentage of variation, followed by G x IPP. IPP had the least impact on variance accountability across locations.

ANALYSIS FACTOR	Trials - % variance accounted for by factor on yield							
ANALTSIS FACTOR	MET ALL	CND	COR	TMN				
Site	77.41%							
IPP	0.38%	3.81%	11.24%	1.74%				
IPP: Site	0.0%							
Entry	11.3%	86.35%	59.47%	49.04%				
Entry: IPP	0.55%	9.85%	29.29%	49.22%				
Entry: Site	4.84%							
Entry: IPP: Site	5.52%							

Table 5: 2022 MET analysis for grain yield (t/ha) showing % variance factors comparisons where IPP = Plant population, Entry = (G) Genetics, and Site = (E) Environment.

Photo 2: 2022 Lake Hinds WA Hyola technology by population trial CT, TT and LT herbicide Section.

	Variety Technology Entry	Population Target Plants per m2	Mean Yield (t/ha) CND	Mean Oil %	Mean Yield (t/ha) COR	Mean Oil %	Mean Yield (t/ha) TMN	Mean Oil %
	44Y94	15	3.013	50.60	3.620	50.09	1.947	48.92
~	44Y94	25	2.948	50.50	3.116	50.16	1.848	48.98
0 O	44Y94	40	3.010	50.36	3.549	50.69	2.095	48.88
IOL	45Y95	15	3.638	49.23	3.445	48.55	1.729	47.65
NH	45Y95	25	3.253	48.68	3.274	48.48	2.274	47.85
TEC	45Y95	40	3.765	49.82	3.266	48.94	2.540	48.63
ILD	Hyola Continuum CL	15	3.119	51.79	3.452	51.50	1.784	50.48
CLEARFIELD TECHNOLOGY	Hyola Continuum CL	25	3.376	50.88	3.415	51.64	1.891	50.62
EAF	Hyola Continuum CL	40	3.274	51.76	3.206	52.14	2.112	50.40
С	Hyola Solstice CL	15 25	3.289	51.30	3.581	51.37	2.115	50.18
	Hyola Solstice CL	40	3.167	50.61 50.79	3.000	52.00	2.229	48.53
	Hyola Solstice CL	40	3.321	50.79	2.761	52.09	2.372	49.65
	Condor TF	15	2.964	52.57	3.358	52.84	1.488	52.23
TRUFLX OR TRUFLEX + CLEARFIELD TECHNOLOGY	Condor TF	25	3.567	51.78	3.636	53.17	2.181	51.38
RFI	Condor TF	40	3.231	53.04	2.724	53.28	2.320	51.13
LEA	InVigor R 4520P	15	2.755	51.08	2.700	50.01	1.949	49.38
+ С 9GY	InVigor R 4520P	25	3.101	51.33	3.090	49.95	1.695	48.58
R TRUFLEX + C TECHNOLOGY	InVigor R 4520P	40	3.583	51.01	3.255	49.58	1.535	48.74
UFL	XC210034	15	3.265	51.22	2.893	51.08	1.723	51.27
TR ECI	XC210034	25	3.597	51.60	3.264	50.99	1.999	50.07
OR	XC210034	40	3.788	51.77	3.725	51.68	2.113	49.65
X1:	Emu TF	15	1.937	48.30	3.000	49.56	1.674	49.68
RUF	Emu TF	25	2.553	48.55	3.420	50.17	1.729	50.14
μ	Emu TF	40	2.645	49.29	2.737	50.83	2.112	48.67
ß	Hyola Blazer TT	15	3.088	50.42	3.521	50.21	1.744	49.54
ΓΟ	Hyola Blazer TT	25	3.157	50.86	3.151	50.64	1.819	49.41
NON	Hyola Blazer TT	40	3.436	50.81	3.325	49.93	2.062	50.17
ECH	Hyola Defender CT	15	3.224	49.06	2.988	49.73	1.658	48.50
ΕŢ	Hyola Defender CT	25 40	3.140	50.00	3.099	50.11	1.884	49.14
NIZ	Hyola Defender CT Hyola Enforcer CT	15	3.229 2.776	50.03 48.57	2.964 2.646	49.64 49.48	2.095 2.130	49.38 47.61
RIA.	Hyola Enforcer CT	25	2.988	49.77	2.979	48.90	1.785	48.36
⊢ +	Hyola Enforcer CT	40	2.956	49.64	2.603	50.48	1.454	47.00
Σ	HyTTec Trident TT	15	2.947	49.09	2.899	49.64	1.615	47.83
BER	HyTTec Trident TT	25	2.860	49.29	3.148	48.85	1.806	48.04
3 LI	HyTTec Trident TT	40	2.838	49.17	2.610	48.36	1.981	48.26
IO	HyTTec Trifecta TT	15	3.294	50.34	3.113	50.26	2.147	49.29
INE	HyTTec Trifecta TT	25	3.603	50.20	2.689	50.95	2.059	47.77
RIAZ	HyTTec Trifecta TT	40	3.024	49.36	3.254	50.12	1.770	47.81
Ĕ	InVigor LT 4530P	15	2.814	47.78	2.964	48.05	1.810	46.71
ġ	InVigor LT 4530P	25	2.753	47.11	2.702	47.25	1.957	47.99
FIEI	InVigor LT 4530P	40	2.934	47.43	2.730	48.71	1.988	48.25
AR	ATR Bonito	15	1.900	48.76	2.309	49.79	1.135	49.25
TRIAZINE, CLEARFIELD + TRIAZINE OR LIBERTY + TRIAZINE TECHNOLOGY	ATR Bonito	25	1.826	49.58	2.525	49.81	1.306	49.95
ЧĒ,	ATR Bonito	40	1.822	49.56	2.517	50.26	1.516	49.05
AZII	DG Bidgee	15	2.600	48.37	2.300	48.19	1.321	46.00
TRI	DG Bidgee	25	2.714	48.09	3.120	47.48	1.434	45.43
	DG Bidgee	40	2.956	47.66	3.219	47.57	1.266	45.26
	Mean Analysed Yield		3.022	49.98	1.480	50.11	2.610	48.91
	ASReml	CV%	6.1	0.917	4.3	0.917	5.8	1.113
	Statistical	AVSED	0.147459	0.41	0.110404	0.38	0.106088	0.689
	Analysis	LSD (5%)	0.296487	0.927	0.221983	0.926	0.213304	1.109

Table 6: 2022 statistical analysis heatmap for all treatments mean grain yield (t/ha) and oil % across 3 trial

High

Medium

Low

Pacific Seeds

pacificseeds.com.au

environments in Western Australia.

For the single site analyses within the Clearfield technology group (Table 6), the four hybrids demonstrated relatively stable and competitive grain yield performance, with only a few cases where higher populations didn't yield higher results. However, some of these instances of higher yields for different varieties with increased populations were not statistically significant. Oil % relationships often did not display a significant response across the various variety population targets.

In the TruFlex and TruFlex + Clearfield technology group, the four hybrids exhibited strong environmental responses to each other in terms of grain yield. Condor TF and XC210034 consistently demonstrated the highest and most consistent yield outcomes across the 3 locations. The variety Emu TF became more competitive for grain yield in lower rainfall environments (TMN) at higher population levels, where its earlier maturity phenology suited the prevailing environmental conditions. Similar to the prior cases, some of these instances of higher yields for different varieties with higher populations were not statistically significant. Oil % relationships also often did not show a significant response across the various variety population targets.

Within the Clearfield + triazine, triazine, Liberty + triazine hybrids, as well as OP triazine group, the hybrids displayed strong environmental responses to each other for grain yield. Hyola Blazer TT, HyTTec Trifecta, CT210001, and HyTTec Trophy consistently demonstrated the highest and most consistent yield outcomes across the 3 locations. Hyola Enforcer CT and InVigor LT 4530P exhibited moderate yield responses across locations, with the OP varieties often displaying the lowest yield responses. The OP TT variety DG Bidgee TT demonstrated enhanced competitiveness for grain yield in higher rainfall environments (CND & COR), where its phenology suited the softer environmental conditions. Similar to the previous cases, some of these instances of higher yields for different varieties with higher populations were not statistically significant. Oil % relationships also often did not show a significant response across the different variety population targets.

Photo 3: 2022 Tammin WA Hyola technology by population trial with Western Australian agronomists listening to technical extension presentations at the site during flowering stages.

	Variety Technology Entry	Population Target Plants per m2	Gross Return (\$/ha) CND	Gross Return (\$/ha) COR	Gross Return (\$/ha) TMN
	44Y94	15	\$2,746	\$3,291	\$1,734
~	44Y94	25	\$2,661	\$2,807	\$1,623
CLEARFIELD TECHNOLOGY	44Y94	40	\$2,681	\$3,188	\$1,812
JOL	45Y95	15	\$3,281	\$3,085	\$1,517
H	45Y95	25	\$2,892	\$2,905	\$1,988
TEC	45Y95	40	\$3,360	\$2,878	\$2,211
ELD	Hyola Continuum CL	15	\$2,875	\$3,178	\$1,610
SFIE	Hyola Continuum CL	25	\$3,066	\$3,125	\$1,688
EAF	Hyola Continuum CL	40	\$2,963	\$2,910	\$1,855
CL	Hyola Solstice CL	15	\$3,020	\$3,294	\$1,909
	Hyola Solstice CL	25	\$2,866	\$2,747	\$1,960
	Hyola Solstice CL	40	\$2,980	\$2,493	\$2,080
	Condor TF	15	\$2,578	\$2,934	\$1,268
ILD	Condor TF	15	\$2,578	\$2,934 \$3,162	
TRUFLX OR TRUFLEX + CLEARFIELD TECH NOLOGY	Condor TF	25	\$3,061	\$3,162	\$1,836 \$1,912
EAF		40		\$2,311 \$2,289	\$1,912
G√ -CL	InVigor R 4520P InVigor R 4520P	15 25	\$2,360 \$2,640	\$2,289 \$2,597	\$1,830
TRUFLEX + CI FECHNOLOGY			\$3,011	\$2,687	\$1,373
NO NO	InVigor R 4520P XC210034	40	\$2,809		\$1,197
RU CH		15		\$2,480	
E H	XC210034 XC210034	25	\$3,082	\$2,773	\$1,656 \$1,706
X	Emu TF	40	\$3,212 \$1,603	\$3,154 \$2,538	\$1,708
ЪЕ Г	Emu TF	15	\$1,603	\$2,887	\$1,398
TRI	Emu TF	25 40	\$2,104	\$2,887	\$1,424
	Linu n	40	<i>γ</i> 2,137	ŞZ,209	Ş1,000
	Hyola Blazer TT	15	\$2,811	\$3,204	\$1,559
G۲	Hyola Blazer TT	25	\$2,863	\$2,851	\$1,602
ГО	Hyola Blazer TT	40	\$3,087	\$2,959	\$1,805
INC	Hyola Defender CT	15	\$2,899	\$2,701	\$1,465
Ľ.	Hyola Defender CT	25	\$2,825	\$2,790	\$1,658
ETI	Hyola Defender CT	40	\$2,874	\$2,621	\$1,821
ZIN	Hyola Enforcer CT	15	\$2,479	\$2,382	\$1,877
RIA	Hyola Enforcer CT	25	\$2,679	\$2,649	\$1,556
н +	Hyola Enforcer CT	40	\$2,613	\$2,309	\$1,206
È	HyTTec Trident TT	15	\$2,636	\$2,607	\$1,414
BER	HyTTec Trident TT	25	\$2,530	\$2,794	\$1,569
S LI.	HyTTec Trident TT	40	\$2,491	\$2,266	\$1,699
D.	HyTTec Trifecta TT	15	\$2,986	\$2,818	\$1,916
TRIAZINE, CLEARFIELD + TRIAZINE OR LIBERTY + TRIAZINE TECHNOLOGY	HyTTec Trifecta TT	25	\$3,246	\$2,427	\$1,791
IAZ	HyTTec Trifecta TT	40	\$2,665	\$2,894	\$1,503
+ TR	InVigor LT 4530P	15	\$2,347	\$2,479	\$1,481
<u> </u>	InVigor LT 4530P	25	\$2,257	\$2,217	\$1,601
FIEL	InVigor LT 4530P	40	\$2,384	\$2,239	\$1,599
AR	ATR Bonito	15	\$1,724	\$2,084	\$1,009
CLE	ATR Bonito	25	\$1,645	\$2,269	\$1,160
ΪË	ATR Bonito	40	\$1,622	\$2,253	\$1,321
VIZ	DG Bidgee	15	\$2,318	\$2,044	\$1,141
RI4	DG Bidgee	25	\$2,401	\$2,750	\$1,222
F	DG Bidgee	40	\$2,589	\$2,821	\$1,054
	Mean Gross Retu		\$2,662	\$2,697	\$1,595
	Oil Bonification /			every 1% Gr	
	Gross Price Assump			nGM & \$80	
	Effective Sowin	ng Rates	1.1kg/ha, 1.8kg/ha & 2.85kg/ha		

High

Medium

Low

Table 7: 2022 statistical analysis heatmap for grain yield (t/ha) and mean oil % converted to gross returns \$/ha across 3 trial environments in Western Australia.

The gross returns were calculated using the assumptions from Table 4. The Clearfield, TruFlex + Clearfield, and TruFlex hybrids often exhibited the highest returns across all 3 locations (Table 7). However, Hyola Blazer TT and CT210001 also demonstrated competitive gross returns relative to the Clearfield, TruFlex + Clearfield, and TruFlex hybrids at certain locations.

The top 10 hybrids frequently displayed gross returns within the range of \$2500 to \$3500, while the two OP (OP) varieties yielded gross returns ranging from \$1009 to \$2821 across various population treatments and locations.

Increased population targets of hybrids often did not result in significantly higher gross returns compared to lower plant population targets due to the higher costs associated with seed prices. The gross returns of genetically modified (GM) hybrids were also influenced by the grain price differential between non-GM and GM commodities.

The new XC and CT hybrid technologies showcased the capacity to yield and provide competitive gross returns, comparable to single tolerance technologies like TruFlex, Clearfield, and triazine tolerant hybrids.

Oil % results generally exhibited higher values for TruFlex, Clearfield, and TruFlex + Clearfield technologies (Table 6), which had a more pronounced positive impact on gross returns when contrasted with the lower Oil % values of the two OP varieties.

Photo 4: 2022 Tammin WA Hyola technology by population trial CL herbicide section.

2022 MET Analysis across sites for Grain Yield (t/ha)

Variety by Target Population

	variety by rarget Population			
	Variety	IPP	Yield (t/ha)	
	44Y94	15	3.244	
	44Y94	25	2.980	
CLEARFIELD TECHNOLOGY	44Y94	40	3.310	
DLC	45Y95	15	3.325	
ž	45Y95	25	3.302	
EC	45Y95	40	3.566	
Б	Hyola Continuum CL	15	3.176	
E	Hyola Continuum CL	25	3.291	
ARF	Hyola Continuum CL	40	3.283	
TE/	Hyola Solstice CL	15	3.354	
0	Hyola Solstice CL	25	3.218	
	Hyola Solstice CL	40	3.255	
		•		
0	Condor TF	15	3.011	
	Condor TF	25	3.544	
TRUFLX OR TRUFLEX + CLEARFIELD TECHNOLOGY	Condor TF	40	3.172	
	InVigor R 4520P	15	2.871	
чб	InVigor R 4520P	25	2.985	
G F	InVigor R 4520P	40	3.149	
RTRUFLEX + C TECHNOLOGY	XC210034	15	3.009	
EC	XC210034	25	3.371	
Я Г	XC210034	40	3.625	
Ľ	Emu TF	15	2.633	
۳ ۳	Emu TF	25	2.976	
F	Emu TF	40	2.896	
×	Hyola Blazer TT	15	3.145	
ö	Hyola Blazer TT	25	3.061	
Į	Hyola Blazer TT	40	3.333	
H	Hyola Defender CT	15	2.939	
ΤE	Hyola Defender CT	25	3.083	
NE	Hyola Defender CT	40	3.145	
AZI	Hyola Enforcer CT	15	2.882	
LIBERTY + TRIAZINE TECHNOLOGY	Hyola Enforcer CT	25	3.019	
+	Hyola Enforcer CT	40	2.706	
RTY	HyTTec Trident TT	15	2.859	
BE	HyTTec Trident TT	25	2.926	
	HyTTec Trident TT	40	2.907	
0	HyTTec Trifecta TT	15	3.173	
IN	HyTTec Trifecta TT	25	3.145	
IIAZ	HyTTec Trifecta TT	40	3.014	
TR	InVigor LT 4530P	15	2.884	
÷.	InVigor LT 4530P	25	2.866	
	InVigor LT 4530P	40	2.954	
TRIAZINE, CLEARFIELD + TRIAZINE OR	ATR Bonito	15	2.108	
CLE	ATR Bonito	25	2.246	
ц Ш	ATR Bonito	40	2.385	
N	DG Bidgee	15	2.427	
I NZ	DG Bidgee	25	2.801	
TR	DG Bidgee	40	2.890	
			0 229	
		AVSED LSD (5%)	0.238 0.466	
		L3D (3%)	0.400	

Variety (G) only					
Variety	Yield (t/ha)				
44Y94	3.178				
45Y95	3.398				
Hyola Continuum CL	3.250				
Hyola Solstice CL	3.276				
Condor TF	3.243				
InVigor R 4520P	3.002				
XC210034	3.335				
Emu TF	2.835				
Hyola Blazer TT	3.180				
Hyola Defender CT	3.056				
Hyola Enforcer CT	2.869				
HyTTec Trident TT	2.898				
HyTTec Trifecta TT	3.111				
InVigor LT 4530P	2.901				
ATR Bonito	2.247				
DG Bidgee	2.706				
AVSED	0.141				
LSD (5%)	0.276				

Population Target (IPP) only

IPP	Yield (t/ha)
15	2.940
25	3.051
40	3.099
AVSED	0.059
LSD (5%)	0.115

LSD (5%)0.466LowTable 8: 2022 MET analysis heatmap for grain yield (t/ha) showing variety x population interaction, variety and population
responses across 3 trial environments in Western Australia.

High

Medium

The MET site analyses (Table 8) of variety (G) by population targets indicated variable responses among different varieties.

Within the Clearfield, TruFlex, and TruFlex + Clearfield technology groups, one out of the 8 hybrids displayed a significant positive response between 15 plants and 25 plants per m^2 population targets. Another hybrid out of the 8 exhibited a significant positive response between 15 plants and 40 plants per m^2 population targets.

Within the Clearfield + triazine, triazine, and Liberty + triazine hybrids, as well as the OP triazine group, no significant response was observed across the 3 sites for increased plant populations.

The MET site analyses of G only, indicated no significant difference between the four Clearfield hybrids for grain yield. Some significant differences emerged between TruFlex and TruFlex + Clearfield hybrids, although Condor TF and XC210034 exhibited no significant difference. In the TT, CT & LT technology group, notable differences existed between hybrids and OP varieties, with HyTTec Trifecta TT, Hyola Blazer TT, and CT210001 yielding the highest across all 3 sites.

The MET analysis of population target only demonstrated a significant yield increase from 15 plants per m^2 to 40 plants per m^2 .

Conclusion

These comparisons of canola varieties with 6 different herbicide technologies (single trait or stacked) at 3 population targets across 3 locations in Western Australia have yielded valuable insights into how strong E can impact final agronomic and economic performance.

This research underscores the findings of Kudnig (2021), which determined that G X E X M interactions are exceedingly complex and dynamic. G stands as the most significant controllable factor, i.e., varietal choice; E, on the other hand, emerges as the most influential and least controllable factor. In this context, M and plant population exert a minor influence in certain environments, yet for every environment where M significantly affects outcomes, there are many where it doesn't.

From a profitability perspective, the primary consideration is the "genetics by multi-environment" relationships.

Regarding G, irrespective of varying herbicide technologies, whether single or stacked, the genetic yield potential of the base germplasm remains a pivotal factor influencing yield, oil, and gross return outcomes at individual locations. However, across multiple locations, E takes precedence as the main driver.

CT or TT hybrids with higher-yielding genetic backgrounds now present a strong positive value proposition in terms of \$ per hectare for canola growers in specific environments. In comparison, XX, XC, and CL technologies largely offer consistently adapted performance and returns.

The two OP TT varieties evaluated often displayed significantly lower yields and oil content, resulting in the lowest gross returns in many population treatment comparisons, especially against most of the different herbicide-tolerant technology hybrids.

Key words

Canola, varieties, Hybrid, CT, Clearfield + triazine tolerant, triazine tolerant, Liberty + triazine tolerant, Clearfield, XC, TruFlex + Clearfield, TruFlex, open pollinated, cultivar type, plant populations, grain yield, gross returns, value proposition.

Acknowledgments

2022 Trial development, design and analysis by Willow Liddle, R&D Research Assistant (Canola), Advanta Seeds 2022 Trial planting, maintenance, spraying and harvest across Western Australia by Synergy (SLR research & Extension).

References

Brill R., Jenkins M. L., Gardner M. J., Lilley J. M., Orchard B. A. (2016) Optimizing canola establishment and yield in southeastern Australia with hybrids and large seed. Crop and Pasture Science 67, 409-418.

Brill RD, Jenkins L, Gardner M (2014) Canola establishment; does size matter? In 'Grains Research and Development Corporation Advisor Update.

Catellier C, (2019) M.Sc. P.Ag., Research Associate Optimal Seeding rate based on seed size in canola. Project #Carp SCDC 20 18-084, The Saskatchewan Canola Development Commission.

French RJ, Seymour M, Malik RS (2016) Plant density response and optimum crop densities for canola (Brassica napus L.) in Western Australia. Crop & Pasture Science 67, 397–408.

Gan Yantai, a K. Neil Harker, b H. Randy Kutcher, c Robert H. Gulden, d Byron Irvine, e William E. May, f John T. O'Donovanb, (2016) Canola seed yield and phenological responses to plant density, Canadian Journal of Plant Science 96(1): 151-159

Hanson BK, Johnson BL, Henson RA, Riverland NR (2008) Seeding rate, seeding depth, and cultivar influence on spring canola performance in the Northern Great Plains. Agronomy Journal 100, 1339–1346.

Harker KN, O'Donovan JT, Smith EG, Johnson EN, Peng G, Willenborg CJ, Gulden RH, Mohr R, Gill KS, Grenkow LA (2015) Seed size and seeding rate effects on canola emergence, development, yield and seed weight. Canadian Journal of Plant Science 95, 1–8.

Kudnig RJ, Tabah D, (2020) Exploring the effects of seed size and target plant densities on the yield of hybrid canola across Australia. 2020 Western Region GRDC Grains Research Updates.

Kudnig RJ, (2021) Optimizing the Gross Return value proposition when comparing Farmer Retained OP TT vs Hybrid CT[®] and TT canola with varying seed sizes and plant population targets. 2021 Western Region GRDC Grains Research Updates.

Kutcher HR,1 T. K. Turkington,2 G. W. Clayton,3 K. N. Harker2 (2013) Response of herbicide-tolerant canola (Brassica napus L.) cultivars to four row spacings and three seeding rates in a no-till production system. Canadian Journal of Plant Science, 2013, 93(6): 1229-1236

Zhang H, Berger JD, Milroy SP (2013) Genotype x environment interaction studies highlight the role of phenology in specific adaptation of canola (Brassica napus) to contrasting Mediterranean climates. Field Crops Research 144, 77–88.

Zhang H, Berger JD, Seymour M, Brill R, Herrmann C, Quinlan R, Knell G (2016) Relative yield and profit of Australian hybrid compared with open-pollinated canola is largely determined by growing-season rainfall. Crop & Pasture Science 67, 323–331.

Paper reviewed by

Mr. Justin Kudnig, National Technical Canola Manager – Pacific Seeds Australia – a Subsidiary of Advanta Seeds.

Disclaimer

The information provided in this publication is intended as a guide only. Advanta Seeds Pty Ltd (including its officers, employees, contractors and agents) ('Advanta Seeds') can not guarantee that every statement is without flaw of any kind. While Advanta Seeds has taken all due care to ensure that the information provided is accurate at the time of publication, various factors, including planting times and environmental conditions may alter the characteristics and performance from plants. Advanta Seeds shall not be liable for any errors or omissions in the information or for any loss, injury, damage or other consequence whatsoever that you or any person might incur as a result of your use of or reliance upon the products (whether Advanta Seeds products or otherwise) and information which appear in this publication. To the maximum extent permitted by law, the liability of Advanta Seeds for any claim whatsoever arising out of the supply or use of or reliance upon the products and information (including liability for breach of any condition or warranty implied by the Trade Practices Act 1974 or any other law) is limited at its discretion, to the replacement of the products, the supply of equivalent products or the resupply of the publication. For application to specific conditions, seek further advice from a local professional. ©Advanta Seeds 2023.

